Weight modules over exp-polynomial Lie algebras
نویسندگان
چکیده
منابع مشابه
Weight Modules over Exp-polynomial Lie Algebras
In this paper, we generalize a result by Berman and Billig on weight modules over Lie algebras with polynomial multiplication. More precisely, we show that a highest weight module with an exp-polynomial “highest weight” has finite dimensional weight spaces. We also get a class of irreducible weight modules with finite dimensional weight spaces over generalized Virasoro algebras which do not occ...
متن کاملWeight Modules of Direct Limit Lie Algebras
In this article we initiate a systematic study of irreducible weight modules over direct limits of reductive Lie algebras, and in particular over the simple Lie algebras A(∞), B(∞), C(∞) and D(∞). Our main tool is the shadow method introduced recently in [DMP]. The integrable irreducible modules are an important particular class and we give an explicit parametrization of the finite integrable m...
متن کاملKoszul Duality for Modules over Lie Algebras
Let g be a reductive Lie algebra over a field of characteristic zero. Suppose that g acts on a complex of vector spaces M by iλ and Lλ, which satisfy the same identities that contraction and Lie derivative do for differential forms. Out of this data one defines the cohomology of the invariants and the equivariant cohomology of M. We establish Koszul duality between them.
متن کاملUnitarizable weight modules over generalized Weyl algebras
We define a notion of unitarizability for weight modules over a generalized Weyl algebra (of rank one, with commutative coeffiecient ring R), which is assumed to carry an involution of the form X∗ = Y , R∗ ⊆ R. We prove that a weight module V is unitarizable iff it is isomorphic to its finitistic dual V . Using the classification of weight modules by Drozd, Guzner and Ovsienko, we obtain necess...
متن کاملSupports of Weight Modules over Witt Algebras
In this paper, as the first step towards classification of simple weight modules with finite dimensional weight spaces over Witt algebras Wn, we explicitly describe supports of such modules. We also obtain some descriptions on the support of an arbitrary simple weight module over a Z-graded Lie algebra g having a root space decomposition ⊕α∈Zngα with respect to the abelian subalgebra g0, with t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 2004
ISSN: 0022-4049
DOI: 10.1016/j.jpaa.2003.12.004